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SUMMARY. We consider estimation in logistic regression where some covariate variables may be missing at 
random. Satten and Kupper (1993, Journal of the American Statistical Association 88, 200-208) proposed 
estimating odds ratio parameters using methods based on the probability of exposure. By approximating 
a partial likelihood, we extend their idea and propose a method that estimates the cumulant-generating 
function of the missing covariate given observed covariates and surrogates in the controls. Our proposed 
method first estimates some lower order cumulants of the conditional distribution of the unobserved data 
and then solves a resulting estimating equation for the logistic regression parameter. A simple version 
of the proposed method is to replace a missing covariate by the summation of its conditional mean and 
conditional variance given observed data in the controls. We note that one important property of the 
proposed method is that, when the validation is only on controls, a class of inverse selection probability 
weighted semiparametric estimators cannot be applied because selection probabilities on cases are zeros. The 
proposed estimator performs well unless the relative risk parameters are large, even though it is technically 
inconsistent. Small-sample simulations are conducted. We illustrate the method by an example of real data 
analysis. 
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1. Introduction 
In epidemiologic studies, estimation of an exposure effect on 
disease incidence is a frequent objective. Due to practical con- 
siderations, an exposure variable may not be available for all 
subjects from the study cohort. For example, we consider a 
case-control study of bladder cancer conducted at the Fred 
Hutchinson Cancer Research Center. This population-based 
case-control study was designed to address the association be- 
tween bladder cancer and some nutrients (Bruemmer et al., 
1996). We are interested in covariate variables smoking packet 
year and body mass index (weight/height'). The smoking 
packet year of a participant is defined as the average number 
of cigarette packets smoked per day multiplied by the years 
one has been smoking. In this study, smoking packet year 
is not available for some study subjects since they did not 
respond to the question of the number of cigarettes smoked 
per day. Nevertheless, the majority of subjects did have the 
data on the year that they had smoked. Smoking year in this 
example is a surrogate for smoking packet year. A surrogate 
variable does not have an effect on the disease incidence given 
true covariates. To this problem, a naive approach to analysis 

is the complete-case (CC) analysis, which is to perform the 
usual analysis using observations in a subsample with com- 
plete data, called the validation set. This approach, however, 
can give rise to bias and reduced statistical efficiency. 

In addition to the CC estimator, regression calibration is 
also a practical approach. This method replaces a missing 
variable by its conditional expectation on surrogates and co- 
variates. It is easy to implement and it often performs well, 
although it may be technically inconsistent under some sit- 
uations (Carroll, Ruppert, and Stefanski, 1995, Chapter 3 ) .  
Alternatively, maximum likelihood (ML) may be useful, but 
sometimes it requires an additional model to relate a miss- 
ing covariate to observed data. For example, likelihood meth- 
ods were studied in Satten and Kupper (1993) by model- 
ing the probability of exposure. In general, solving ML es- 
timates may need some iterative procedures, such as the EM 
algorithm. Recently, semiparametric approaches have gained 
considerable attention to avoid the misspecification of a sub- 
model that specifies the relationship between covariate vari- 
ables. One may consider estimating the likelihood nonpara- 
metrically (Carroll and Wand, 1991; Pepe and Fleming, 1991) 
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or a class of inverse selection probability weighted estimators 
(Robins, Rotnitzky, and Zhao, 1994). 

The goal of this paper is to extend the idea of Satten and 
Kupper (1993) to approximate a partial likelihood. We con- 
sider the case that a covariate variable may be missing at  ran- 
dom (MAR). Under this assumption, the missingness mech- 
anism does not depend on the missing value given observed 
data. We note that approximating a partial likelihood in this 
problem was previously discussed in a similar setting by Vach 
and Schumacher (1993). Our proposal is to use some lower or- 
der conditional cumulants (e.g., conditional mean and condi- 
tional variance) to estimate the cumulant-generating function 
of true covariates given observed covariates in the controls. It 
is important to note that the proposed estimator is an approx- 
imate approach and hence is not consistent in general. How- 
ever, it performs quite well under a variety of circumstances. 
The proposed estimator also works in a situation where the 
validation set is only available for controls. 

In Section 2, we introduce the model and a likelihood-based 
estimator from Satten and Kupper (1993). We note that a 
conditional cumulant-generating function is involved in the 
ML estimation procedure. The proposed method is described 
in Section 3. The idea of our method is to estimate the condi- 
tional cumulants of the unobserved covariate given observed 
data in the controls. The asymptotic distribution theory is 
given. Section 4 summarizes results from a simulation study. 
In Section 5 ,  we illustrate the proposed method on the bladder 
cancer case-control study described above. 

2. Estimation Using Conditional Distribution of 

Let Y denote the disease incidence variable, X be a covariate 
variable that is missing in some of the total of n subjects, and 
Z be covariates always observable. Let W be surrogate for X ,  
which is relevant to X but is independent of Y given ( Z ,  X ) .  
Consider the logistic regression model 

Exposure 

pr(Y = 1 I Z,  X )  = H (PO + p4z + pix) , (1) 

where H ( u )  = {I + exp(-u)}-'. Define 6, = 1 if X ,  is avail- 
able and equal zero otherwise. Because we assume that X 
is MAR, X and 6 are conditionally independent given other 
available data. Our goal is to estimate regression parame- 
ters p = ( ,Bo ,&,&)~ .  The CC estimator is based on data 
{(yZ,Z,,X,)  : 6 , = 1 , i = 1 ,  . . . ,  n},ignoringcaseswithoneor 
more missing variables. The CC analysis of /3 is not valid if 
the selection probabilities depend on Y .  

Satten and Kupper (1993) proposed estimation using infor- 
mation on the probability of exposure. Let X I (2, W, Y = 0) 
he modeled up to an unknown parameter a. Satten and Kup- 
per showed that 

pr(Y = 1 I z, W )  = If { P o  + P4Z + W Z ,  W 2 ) )  > ( 2 )  

also showed that f X I ( Z , W . Y = 1 ) ( 4  = f X I ( Z , W , Y = 0 ) ( 4  

where R ( Z ,  W,p)  = ln[E{exp(&X) 1 Z, W,Y = O}]. They 

x exp(&s - R(z,  w, /32)}. Wang, Wang, and Carroll (1997) 
noted that modeling the conditional distribution of exposure 
in the controls (Y = 0) as a member of the exponential fam- 
ily of distributions implies that X given (2, W )  is a mixture 
of two distributions from the same family. In particular, if X 
given (2, W )  is normal with variance o2 among the controls 

with intercept a n ,  then it is normal among the cases but with 
the intercept a0 + 0 2 P 2 .  

Let P(Y 1 2, W )  denote the likelihood of Y given (2, W )  
and P(Y, 6 X )  denote P(Y I Z ,  W )  if 6 = 0 and P ( Y ,  X 1 2, W )  
if 6 = 1. Note that P [ X  1 Z,W,Y] = P [ X  I Z ,  W,Y,6 = I] 
because X is MAR. Therefore, P[Y ,bX  I Z , W ]  = P(Y I 
Z, W){P(X 1 2, W, Y, 6 = 1)}&. The ML estimator may be 
obtained by the method of scoring since R ( Z ,  W, p)  has an 
explicit form as long as X given ( Z ,  W, Y) follows the expo- 
nential family. The ML estimator under this setup is tractable 
and does not require complicated calculations. 

3. Conditional-Cumulant-of-Exposure Method 
Our proposal in this paper is to relax modeling the condi- 
tional distribution of X given (Z,W,Y = 0). As mentioned 
in the previous section, if X I (2, W, Y = 0) is normal, then 
X I ( Z , W )  is a mixture of normals. On the other hand, if 
X I ( Z , W )  is normal, then the model assumption of X 1 
( Z ,  W, Y = 0) does not have a simple form. In this case, as- 
suming normality of ( X  I Z ,  W, Y = 0) may lead to bias esti- 
mation of ,B. Therefore, in the development of our method, in- 
stead of fully modeling the distribution of X I ( Z ,  W, Y = 0), 
we need only a regression model of X 1 (2, W, Y = 0 ) .  We 
assume that E(X 1 Z, W, Y = 0) is parametrized by a. 

3.1 The Proposed Estimator 
Our estimation is to approximate the partial likelihood 
{P(Y  1 X , Z ) } & { P ( Y  1 Z,W)} ' -&,  discussed in Vach and 
Schumacher (1993). They observed that, if the missingness 
does not depend on Y ,  then it is the same as {P(Y 1 
X ,  Z ,  6 = l )} ' (P(Y I Z, W, 6 = 0)}'-&. Furthermore, when 
the missingness depends on (Y, 2, W ) ,  it is proportional to 
the likelihood {P(Y, X 1 Z,  W)}6{P(Y 1 Z ,  W)}l-& if P ( X  I 
2, W )  does not depend on P. This is closely related to Carroll 
and Wand (1991) and Pepe and Fleming (1991). 

By ( 2 ) ,  approximating the induced model P ( Y  I Z , W )  
involves estimating R ( Z ,  W, P 2 ) .  Because the development of 
the new method involves the cumulant-generating function 
of X I (2, W, Y = 0 ) ,  we consider scalar X for simplicity. 
The extension to vector X needs only more complicated 
notation. Let E ( X  I Z,W,Y = 0 )  e p ( Z , W )  and, for 

p j ( Z , W ) .  Let ~1 s ~ ( Z , W ) , K Z ( Z , W )  = 0 2 ( 2 , W )  , . . .  be 
cumulants of X 1 ( Z ,  W, Y = 0). We note that R ( Z ,  W, 02) = 
/32p(Z, W )  + C E 2  {/3i/ j!}~~(Z, W )  (Kendall and Stuart, 
1977, Chapter 3). Assume that there is a positive k such 

Let X: = x : { ~ ( z Z , W ~ )  + C S = , P ~ - ' K ~ ( Z , W ) / ( ~ ! ) } ' - ~ , .  

Thus, the induced model pr(Y = 1 I Z , W )  = H[Po + 
& Z + & { p ( Z , W )  + p;-l~j(Z, Lk) / ( j ! ) } ] .  As discussed 
above, the argument of approximating the partial likelihood 
suggests the replacement of an unobserved Xi by p(&, WL) + 
C;=, & - l ~ j ( Z ,  W ) / ( j ! )  in the nonvalidation set. Let Xr 
be X t  but with estimated p ( Z , W )  and & j ( Z , W ) .  The 
resulting estimator 8, called the conditional-cumulant-of- 
exposure (CCOE) estimator, solves 

j = 2 , . . . ,  00, let E [ { X  - p(z,w))j 1 Z,  W,Y = 01 = 

that R ( Z ,  WlP2) = P2p(Z, W )  + q = 2  ( P ; b J ( Z ,  W/(?). 

n 
-y(l,z:,x:)i{K -H(Po+PEZi+PzX:)}  = o .  (3) 
i=l 
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To implement the proposed estimator, we may solve 
estimating equation (3) by the Newton-Raphson algorithm 
and the starting value for p may be the CC estimator. 
Alternatively, one may apply a usual logistic regression using 
covariate variable X ,  (if 6, = 1) or the replacement X: (if 
6, = 0). However, in practice, a large k value will significantly 
increase the dimension of the nuisance parameters modeling 
tc.,(Z, W ) ,  j = 1,. . . , k .  Therefore, we suggest a practical 
approximation that assumes k = 2. Let a be the parameter 
for p( 2, W )  and y be the parameter for a’ ( Z ,  W ) .  To estimate 
a ,  we consider the idea of an estimating equation and assume 
15 solves 

2 6 , I K  = 0Ipa(Z,, W,, a H X ,  - p(Z,, W,, 4 )  = 0,  (4) 
z = 1  

where p a ( Z z , W 7 , a )  = (a /aa)p(Zz ,W, ,a )  and I [ . ]  is an 
indicator function. Similarly, to estimate y in u2(2, W, y) = 
a 2 ( z ,  w) ,  we may solve 

n 

i=l 

x [{xi-p(zZ,wi,a)}2 - 0 2 ( Z i , W i > Y ) ]  = o ,  (5) 

where a;(Zi, Wi,y) = (a /ay )v2 (Z i ,  Wz,y). In this case, 
a missing X ,  is replaced by X,* = p(Zi ,  Wi, &) + (1/2) 
xp2a2(Zi ,  Wi,?). Modeling p ( Z % ,  Wi, a )  and u2(Z i ,  Wi,y) 
may be examined from controls in the validation set. We will 
further illustrate this in the simulation study. 
3.2 Distribution Theory 
In this section, we assume that ~ j ( 2 , W )  = 0 for j > 2. 
Using the notation above, write (3) as Un(p,&,T) = 0 and 
let p* be the root of E{UTL(P, a, y)} = 0. Then the solution 
to (3) converges to p*. The convergence can be proved by 
using a standard technique of M-estimators. As mentioned 
in the Introduction, the estimand p* is only an approximate 
value for p, but in general, it may be different from p. The 
asymptotic distribution theory for the proposed estimator 
is summarized in the following result. 

PROPOSITION 1: Let pr(Y = I 1 Z , X )  = H(po + 
p i Z  + p2X) and assume that X i  is observed under the 
selection probability pr(bi = 1 I Zi, Wi,Y,). Assume that 
E(X 1 Z, W, Y = 0) = p ( Z ,  W, a )  for some unknown a and 
var(X 1 2, W,Y = 0) = a2(Z,  W,y) for  some unknown y, 
such that logE(exp(P2X) I 2, W, Y = 0) = pzp(Z, W, a )  + 
(&/2)02(Z,W,y). If f i  solves (3), then n1I2(p - p*) is  
asymptotically normally distributed with mean zero and 
asymptotic variance gzven in expression ( 6 )  of the Appendix. 

A sketch of the proof of Proposition 1 is given in 
the Appendix. We observe that the moment conditions in 
Proposition 1 take into consideration the heteroscedastic 
error of X given ( Z ,  W, Y = 0) but ignores higher order 
moments. The approximation error due to ignoring higher 
order moments may result but may be limited compared 
to p. 
4. Simulation S t u d y  
In this section, we demonstrate the numerical performance of 
the estimator that we have developed in this paper. Covariate 
variables X ,  Z ,  and W are scalars. We compared the following 

estimators: 

CC estimator. 
Inverse selection probability weighted estimator. We 
estimate ni by parametrically modeling the logistic 
regression of 6i given (yi, Z,, Wi). 
ML estimator assuming X 1 ( Z ,  W, Y = 0) is normal 
with mean a0 + a l Z  + a2W and a constant variance 
a2 (described in Section 2). 
Approximate CCOE estimator assuming k = 2. It 
solves (3) by using the first two conditional cumulants 
and by assuming that X I ( Z ,  W, Y = 0) has mean 
p ( Z , W )  = (YO + a l Z  + a2W and a nonconstant 
variance function a 2 ( z , w )  = y o + y l ~ + y 2 ~ + 7 3 ~ ’ +  
y4W2 + y5ZW. 

In Table 1, we consider the case that X I ( Z , W , Y  = 0)  
is normal. We first generated both Z and W from N(0 , l )  
such that corr(Z, W )  = 0.25, with size n = 200, 500, 
respectively. We next generated binary outcome Y ’ s  from (2), 
with R ( Z ,  W, p) = p ~ p ( Z ,  W )  + (1/2)&02, where p(2 ,  W )  = 
00 + a12 + a2W. We then generated X such that X I 
Z,  W, Y = 0 is normally distributed with mean p ( Z ,  W )  
and variance a2. Parameters are p = (0,1n(2),1n(2))t, a = 
(0,1, -l)t, and a = 0.5. There were 1000 simulations in each 
experiment. The validation data indicator bi in Table 1 was 
generated by the selection probability such that pr(6, = 1 1 
x, zi, w,) = (1 + exp(-l+ y~ + Z, + ~i)}-l. On average, 
about 58% of the observations are validation data in which 
X was observed. The bias means the average of f i  - p, where 

is an estimator of p. SD denotes the square root of the 
sample variance of the 1000 estimates. Mean(SE) denotes 
the average of the 1000 standard error estimates. We also 
include 95% coverage probabilities of the true parameters for 
the estimates. 

We note from Table 1 that the CC analysis that uses 
only the validation data has large bias since the selection 
probabilities depend on (Y,Z,W). This bias problem can 
be seen more clearly for the case with n = 500. Note that 
both the ML estimator and CCOE estimator perform well in 
terms of bias and efficiency. The weighted estimator appears 
to have a small sample performance problem, although it is 
theoretically consistent. The coverage probabilities of the 95% 
confidence interval seem too low, especially for n = 200. This 
problem diminished as we increased the sample size, and it 
can hardly be seen when n = 2000. 

In Table 2, data were generated similar to those of Table 
1, but X given (Z, W,Y = 0) is normal with a nonconstant 
variance function that u 2 ( Z ,  W )  = {a*p(Z, W ) } 2 ,  where 
a* = 0.75. The validation set consists of a random sample of 
80% of controls only, leading to 60% of missing X. In this case, 
the CC and weighted estimators are not applicable. Similar 
to a result in Section 2, we note that X given (Z, W, Y = 1) 
is normal with mean p(Z, W, a )  + P2a2(Z, W )  and the same 
variance ~ ’ ( 2 ,  W ) .  Parameters are p = (O,ln(3), In(3))t and 
a = (0,1, -l)t. The ML estimator based on a constant 
variance assumption has a moderate model violation, and this 
led to the estimation bias in 00 and p2. In this situation, the 
CCOE estimator is still satisfactory. 
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Table 1 
X given (2, W, Y = 0)  is normal and (T = 0.5. Parameters ,# = (0,  ln(2), ln(2)) 

n = 200 n = 500 

CC Weighted ML CCOE CC Weighted ML CCOE 
~~ 

Po Bias -0.411 -0.022 -0.004 0.000 0.401 -0.014 -0.003 0.002 
SD 0.276 0.255 0.181 0.184 0.164 0.151 0.113 0.116 
Mean(SE) 0.265 0.215 0.178 0.183 0.164 0.139 0.111 0.114 
95% coverage 

probability 0.667 0.903 0.954 0.956 0.307 0.929 0.943 0.937 
,& Bias -0.259 0.014 0.018 0.019 -0.275 -0.003 0.015 0.017 

SD 0.369 0.480 0.258 0.258 0.222 0.306 0.164 0.166 
Mean(SE) 0.373 0.385 0.257 0.263 0.230 0.264 0.160 0.164 
95% coverage 

probability 0.887 0.891 0.953 0.954 0.779 0.911 0.937 0.941 

SD 0.242 0.298 0.178 0.181 0.152 0.193 0.113 0.114 
Mean( SE) 0.247 0.257 0.182 0.184 0.152 0.172 0.113 0.114 
95% coverage 

probability 0.950 0.906 0.962 0.966 0.883 0.922 0.952 0.950 

,& Bias 0.158 0.066 0.021 0.021 0.143 0.035 0.012 0.011 

Table 3 demonstrates the asymptotic bias for a variety of 
parameters. We used n = 5000 for all entries and rechecked 
some entries with n = 10,000, and a difference of <0.005 
was noticed. Covariates Z,  W were generated similar to Table 
1, but X given ( Z ,  W )  was normal with mean Z - W and 
variance u2. The validation set selection is the same as in Ta- 
ble 2. Under this setup, the bias of the CCOE estimator is 
mainly from approximating R(2, W, a). The maximal abso- 
lute bias happens when = ,#2 = ln(6) and n = 1. Among 
these factors, larger p2 is the most sensitive one to the bias. 
Nevertheless, the magnitude of the bias seems to be limited 
compared to the magnitude of ,#2. 

5. Data Analysis 
We now apply the methods to the case-control study of blad- 
der cancer described in the Introduction. Issues on the pro- 
spective analysis of case-control data were addressed in Car- 
roll, Wang, and Wang (1995). In this study, eligible subjects 
were residents of three counties of western Washington state 
who were diagnosed between January 1987 and June 1990 
with invasive or noninvasive bladder cancer. In our demon- 
stration, the response variable is the bladder cancer history 
( Y ) ,  and we are interested in covariate variables smoking 
packet year ( X )  and body mass index ( Z ) .  There were a total 
of 215 cases and 283 controls in this data analysis, where 2 is 

Table 2 
Validation sample available only for controls. X given (2, W, Y = 0 )  i s  normal with 

var(X 1 2, W, Y = 0) = {(T,E(X 1 Z,  W, Y = 0) }2 ,  where (T* = 0.75. p = (O,ln(3), ln(3)). 
~~~~ 

n = 200 n = 500 

CC Weighted ML CCOE CC Weighted ML CCOE 

PO Bias 
SD 
Mean(SE) 
95% coverage 

probability 
p1 Bias 

SD 
Mean(SE) 
95% coverage 

probability 
/32 Bias 

SD 
Mean(SE) 
95% coverage 

probability 

-0.225 
0.322 
0.327 

-0.005 
0.252 
0.266 

-0.200 
0.182 
0.193 

0.024 
0.143 
0.149 

0.956 
0.016 
0.366 
0.341 

0.962 
0.031 
0.380 
0.408 

0.906 
-0.001 

0.223 
0.213 

0.958 
0.004 
0.233 
0.244 

0.954 

0.297 
0.295 

-0.036 
0.976 
0.071 
0.396 
0.472 

0.944 

0.181 
0.177 

-0.072 
0.960 
0.013 
0.227 
0.249 

0.916 0.960 0.888 0.948 
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Table 3 
Asymptotic bias analysis: covariates 2 and W are standard bivariate normal with 

correlation 0.25. X given 2, W is normal with mean Z - W and variance u2. 

P1 = ln(2) P1 = 144) Pi = 146) 
P2 P2 P2 

nu/n u ln(2) ln(4) ln(6) ln(2) ln(4) ln(6) ln(2) ln(4) ln(6) 

0.4 0.5 
1 

0.2 0.5 
1 

0.4 0.5 
1 

0.2 0.5 
1 

-0.003 
-0.010 

-0.003 
-0.007 

0.000 
0.007 

-0.001 
-0.001 

Bias of the C C O E  Estimator for 01 
-0.013 -0.026 -0.005 -0.029 -0.048 
-0.041 -0.065 -0.022 -0.075 -0.106 

-0.013 -0.026 -0.006 -0.033 -0.057 
-0.029 -0.043 -0.023 -0.082 -0.112 

Bias of the CCOE Estimator for ,& 
-0.005 -0.020 0.002 -0.004 -0.020 

0.021 0.061 0.010 0.012 0.027 

-0.016 -0.045 0.000 -0.022 -0.053 
-0.033 -0.055 -0.002 -0.051 -0.099 

- 

-0.007 
-0.030 

-0.009 
-0.034 

0.004 
0.014 

0.000 
-0.002 

-0.030 
-0.101 

-0.048 
-0.121 

-0.002 
0.011 

-0.022 
-0.060 

-0.065 
-0.137 

-0.079 
-0.167 

-0.019 
0.019 

-0.061 
-0.120 

available for all subjects. However, the smoking packet year 
information of 1 case and 159 controls were missing. In addi- 
tion, we treated past smokers as in the nonvalidation set since 
we were primarily interested in the smoking effect of current 
smokers. As a result, there were 121 cases and 58 controls 
in the validation set. We consider the years that a subject 
had smoked ( W )  as the surrogate variable for X .  Standard- 
ized measurements for X ,  2, and W were used. Note that the 
original study has a total of 667 subjects, but the analyses 
here are based on 498 current and past smokers. 

Figure 1 shows the scatterplot of X versus W from the 
validation controls. We note that the variation of X increas- 
es as W increases. From the regression of X given (2 ,W)  
in the controls, the least square estimates of a are (-0.628, 
0.116, 0.670) with standard errors (0.173, 0.116, 0.186) and 
the regression standard deviation assuming constant residual 
variance is 0.805. However, X 1 (2, W, Y = 0) seems to have a 

heteroscedastic variance, which can be seen from the residual 
plot (Figure 2), with the regression residual against X .  

We now discuss the missing data mechanism. By running a 
logistic regression of 6 on (Y, 2, W ) ,  we obtained the param- 
eter estimates (-1.847, 1.808, -0.179, 1.643) with standard 
errors (0.197, 0.247, 0.123, 0.184). The result of the paramet- 
ric estimation of the selection probabilities suggests that the 
missingness has strong association with Y and W .  

The estimates of Pi  and P2 are given in Table 4, while 
those of Po are not valid because of the casecontrol sam- 
pling scheme. The p ( 2 ,  W )  and a2(Z,  W )  are identical to the 
ones used in the simulation study. We note that the ML es- 
timate assuming normality with a constant variance of X 1 
(2, W, Y = 0) might have a model misspecification problem 
in this data analysis. From this result, the CC analysis does 
not show a significant adverse effect of smoking on bladder 

- - -  

- -  I -  
I 

-2 i 

Figure 1. 
dardized smoking year in the controls. 

Scatterplot of the standardized smoking packet year versus the stan- 
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I -  
Figure 2. 
trols. The solid line is a smoothing curve to fit the residuals. 

Residuals versus the standardized smoking packet year in the con- 

cancer risk among current or past smokers. This might be 
because the selection of the validation set is strongly posi- 
tively associated with the surrogate variable. Because of the 
missingness mechanism, we tend to believe that the estimates 
from the weighted estimate, the ML estimate, and the CCOE 
estimates are more reliable than the CC analysis. Some differ- 
ences, although not large, between the ML estimates and the 
CCOE estimates were observed. This supports that smoking, 
measured by packet year, increases the risk of bladder cancer. 
From the ML or CCOE estimate, an increased risk of bladder 
cancer incidence was also noted for an increased body mass 
index at the 5% significance level. 

6. Discussion 
We have proposed an estimation method for logistic regression 
when some covariates may be missing and the missingness is 
ignorable. In this paper, we have illustrated approximation 
based on modeling the conditional mean and the conditional 
variance of the exposure variable. One important feature of 
the proposed estimator is that it is applicable if the valida- 
tion set includes only controls. Our analytic calculations and 
simulations suggest that, under a variety of circumstances, 
the proposed estimator performs quite well for the estimation 
of the logistic regression parameter P. This proposed CCOE 
estimator can be viewed as a method that replaces a missing 

Table 4 
Bladder cancer analysis 

cc Weighted ML CCOE 

P1 0.088 0.191 0.278 0.226 
(SE) (0.142) (0.189) (0.113) (0.115) 

P2 0.251 0.596 0.443 0.508 
(SE) (0.177) (0.248) (0.105) (0.146) 

Note: Parameters and 0 2  are the coefficients of the standard- 
ized body mass index and the standardized smoking packet year, 
respectively. 

X value by X*, defined in Section 3. The estimator can be 
implemented by either solving estimating equations or using 
an algorithm that needs only standard subroutines (e.g., from 
SAS or Splus). To estimate the standard errors, the former can 
be obtained by a sandwich estimator and the latter may be 
obtained by bootstrap. Naturally, there are situations where 
higher order cumulants may be needed to reduce the bias of 
the CCOE estimator. For example, if the distribution of X 
given (2, W, Y = 0) is highly skewed and the measurement 
error is large, then we suggest using k = 4. 

The proposed approach can be applied to Cox regression 
with missing covariates. Briefly, for a subject with missing co- 
variate x, one needs to approximate E[exp{PzX 12, w, G ( t ) } ] ,  
where G ( t )  is an at-risk indicator. (The details are in an un- 
published manuscript available from the first author.) 
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RESUME 
Nous considkrons le problbme de l’estimation dans une rkgres- 
sion logistique oh certaines covariables peuvent 6tre alhatoire- 
ment manquantes. Satten et Kupper (1993) ont proposh 
d’estimer les paramiitres que sont les rapports de chances en 
utilisant des mkthodes fondkes sur la probabilitk d’exposition. 
En approchant une vraisemblance partielle, nous ktendons 
leur idke et proposons une mkthode qui permet d’estimer 
la fonction generatrice des cumulants de la covariable man- 
quante sachant les covariables observkes et les variables sup- 
plkantes dans les contrbles. Notre mkthode consiste 8. estimer 
d’abord quelques cumulants d’ordre faible de la distribution 
conditionnelle des donnkes non observkes et ensuite 8. rksoudre 
une kquation d’estimation du parametre de la rhgression lo- 
gistique qui en rksulte. Une version simple de la mkthode prc- 
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posee est de remplacer la covariable manquante par la som- 
mation de ses moyenne conditionnelle et variance condition- 
nelle sachant les valeurs observees dans les contr6les. Nous 
remarquons qu’une propriktk importante de la mkthode pro- 
posee est que, lorsque la validation est faite seulement sur 
les contreles, une classe d’estimateurs semi paramktriques in- 
versement pondkrks par la probabilitk de sdlection ne peut 
Stre utiliske car alors les probabilitks de selection de ces cas 
sont nulles. L’estimateur propose a de bonnes performances 
Zi moins que les parametres de risques relatifs soient grands; 
mBme s’il est techniquement non convergent. Des simulations 
sur de petits Bchantillons sont faites. Nous illustrons la mk- 
thode par un exemple d’analyse de donnees reelles. 
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